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Abstract

Artificial neural networks (ANNs) were successfully developed for the modeling and prediction of electrophoretic mobility
of a series of sulfonamides in capillary zone electrophoresis. The cross-validation method was used to evaluate the prediction
ability of the generated networks. The mobility of sulfonamides as positively charged species at low pH and negatively
charged species at high pH was investigated. The results obtained using neural networks were compared with the
experimental values as well as with those obtained using the multiple linear regression (MLR) technique. Comparison of the
results shows the superiority of the neural network models over the regression models.  2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction rameters and the responses in CE. For example, Fu
and Lucy have developed empirical expressions for

Capillary electrophoresis (CE) has become a the prediction of electrophoretic mobility of mono-
powerful separation technique and is widely applied amines and aliphatic carboxylic acids [1,2]. They
to a variety of analytical samples. During method have correlated the mobility of the analytes with the
development in CE, the analysts generally have to molecular mass, molar volume and dissociation
employ a large number of experiments, which is constant using non-linear equations. Also, Liang and
often time-consuming. Quantitative structure–reten- coworkers have studied the correlation between the
tion relationships (QSRRs) have been extensively electrophoretic mobility of 13 flavonoids and topo-
used to explain separation mechanisms and to predict logical indices [3]. The separation of sulfonamides
retention behavior in analytical chemistry. However, by CE was usually conducted in the mode of
only a few research groups have investigated the capillary zone electrophoresis (CZE) or micellar
quantitative correlation between the analytical pa- electrokinetic chromatography (MEKC) [4,5]. These

compounds can be separated at an optimum pH using
various types of buffers. For sulfonamides, two
dissociation equilibria exist as shown in Fig. 1.*Corresponding author. Tel.: 198-21-600-5718; fax: 198-21-
Therefore, depending on the pH of the buffer em-601-2983.
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tion network receives a set of inputs, which are
multiplied by each neuron’s weights. These products
are summed for each neuron and a non-linear
transfer function is applied. The transformed sums
are then multiplied by the output weights where they
are summed a final time, transformed, and inter-
preted. Since a back-propagation network is a super-
vised method, the desired output must be known for
each input vector so an error can be calculated. This
error is propagated backwards through the network,Fig. 1. Dissociation equilibria of sulfonamides involving pKa,1

adjusting the weights so that the next time theand pK .a,2

network sees the same input patterns, it will come
as negatively charged, deprotonated species or as closer to the desired output. The patterns are re-
positively charged, protonated species [6]. peated many times until the network learns the

Since sulfonamides are commonly used to treat relationship.
bacterial infections related to the respiratory, intesti- In this work, the electrophoretic mobility of
nal and urinary tracts, theoretical study of these sulfonamides as negatively and positively charged
compounds seems to be useful. On the other hand, species and negatively charged species in the pres-
the electrophoretic mobility of an ion is of fun- ence of the micelle of sodium dodecyl sulfate (SDS)
damental importance in CE, therefore the main goal was calculated using ANNs. The inputs of the
of this work was investigation of the influences of networks were selected by developing MLR models.
different parameters on electrophoretic mobility of
sulfonamides as negatively and positively charged
species. As a first step in this work, three separate

3. Experimental
multiple linear regression (MLR) models were de-
veloped for the prediction of electrophoretic mobility
of different forms of sulfonamides. Then, for inspec- 3.1. Data set
tion of non-linear interactions between different
parameters in the MLR models, two separate artifi- The electrophoretic mobility of 13 sulfonamides as

1cial neural network (ANN) models were generated positively charged species (H2A ) and negatively
2for the prediction of electrophoretic mobility of some charged species (A ) was taken from Ref. [6] and

sulfonamides. electrophoretic mobility of anionic sulfonamides in
the presence of SDS micelle was taken from Ref. [5].
The structure of compounds studied in this work is

2. Theory given in Fig. 2 and the electrophoretic mobilities are
given in Tables 1 and 2, respectively. As can be seen

A detailed description of the theory behind a from Fig. 2, the substituents consist of five and six
neural network has been adequately described by member heterocyclic compounds with different
different researchers [7–10]. Among different meth- atoms of oxygen, nitrogen and sulfur. In addition,
ods of training of neural networks, the back-propaga- there are different electron donor and electron accep-
tion (BP) technique is the most popular and is often tor species, such as methyl and chlorine groups on
used in analytical applications [11–14]. An artificial these heterocyclic rings. Electrophoretic mobilities

24neural network consists of a number of ‘‘neurons’’ or for cationic sulfonamides ranged from 0.71310 to
24 2 21 21‘‘hidden units’’ that receive data from the outside, 1.94310 (cm V s ), for anionic sulfonamides

24 24 2 21 21process the data, and output a signal. A ‘‘neuron’’ is from 22.13310 to 22.63310 (cm V s ),
essentially a regression equation with a non-linear and for anionic sulfonamides in the presence of the

24 24 2 21output. When more than one of these neurons is used, SDS from 22.01310 to 22.45310 (cm V
21non-linear models can be fitted. The back propaga- s ).
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Waals volume, surface area, shadow areas, shape
factor, etc. (18 descriptors). Electronic descriptors
include partial charges of the most negative and the
most positive atoms, dipole moment, ionization
potential (12 descriptors), and finally physico-chemi-
cal descriptors include polarizability and p-function
of dissociation constant (two descriptors). In order to
calculate the geometric and electronic descriptors,
the three-dimensional structures of compounds as

2 1anionic (A ) and cationic (H2A ) were optimized
using AM1 Hamiltonian implemented in the MOPAC
program [15] and Hyperchem package [16]. For
calculating of the volume of the molecules, the
algorithm given by Stouch and Jurs was used and its
program was written in FORTRAN 77 in our
laboratory [17]. Some of the descriptors encoded
similar information for the compounds. It was there-
fore desirable to test each descriptor and eliminate
some of those that show high correlation (R.0.90)
with each other. By using this criterion, ten out of 47
original descriptors were eliminated. Then, multi-
variate linear models were generated using SPSS/PC
software package [18]. The best MLR model is one
that has high R- and F-values, low standard devia-
tion and high ability for prediction. Three of the best
models for different forms of sulfonamides (two
anionic and one cationic forms) are presented in
Table 3.

3.3. Neural network generation

The ANN program was written in FORTRAN 77
Fig. 2. Structures of the sulfonamides studied in this work. in our laboratory. The descriptors appearing in the

MLR models were used as inputs for generation of
3.2. Regression analysis the networks. A three-layer network with a sigmoidal

transfer function was designed. The initial weights
As first step for developing of the regression were randomly selected between 20.3 and 10.3.

model the numerical parameters (descriptors) should Before training, the input and output values were
be generated. A total of 47 descriptors were calcu- normalized between 0.1 and 0.9. The number of
lated for each sulfonamide as cationic and anionic neurons in the hidden layer, learning rate and
forms. These descriptors can be classified into four momentum were optimized. The standard error of
major groups of topological, geometric, electronic training (SET) was plotted versus the number of
and physico-chemical parameters. Topological de- iterations for different number of neurons at the
scriptors include fragment descriptors and molecular hidden layer. The number of neurons at the hidden
connectivity indexes that were estimated from two- layer with the minimum value of SET was selected
dimensional representations of the molecules (15 as the optimum number. Then, learning rate and
descriptors). Geometric descriptors consist of van der momentum were optimized in a similar way.
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Table 1
Experimental and ANN and MLR calculated values of electrophoretic mobilities together with the values of the descriptors appearing in the
model for the cationic sulfonamides

a bNo. Compound Descriptors Electrophoretic mobility

DH pK SA m m mANN MLR EXP

1 Sulfathiazole 243.691 2.08 243.882 1.535 1.319 1.530
2 Sulfamethazine 163.060 2.28 292.104 1.472 1.499 1.500
3 Sulfamethoxypyridazin 155.183 2.09 278.172 1.333 1.279 1.320
4 Sulfisomidine 173.891 2.68 292.428 1.940 2.182 1.940
5 Sulfamerazine 170.180 2.17 270.828 1.471 1.383 1.460
6 Sulfamete 140.830 1.87 280.008 0.981 0.905 0.960
7 Sulfadiazine 177.159 2.10 249.282 1.334 1.320 1.330
8 Sulfaquinoxaline 197.635 1.86 293.400 0.908 1.045 0.900
9 Sulfamonomethoxine 142.627 1.98 278.010 1.166 1.158 1.200

10 Sulfadimethoxine 133.860 1.87 309.546 0.897 0.827 0.900
11 Sulfachloropyridazine 183.379 1.90 263.700 0.996 1.074 1.000
12 Sulfamethoxazole 167.916 1.83 260.676 0.783 1.007 0.740
13 Sulfisoxazole 157.043 1.66 278.442 0.707 0.651 0.710

a Definitions of the descriptors are given in the text.
b 4 2 21 21

m is mobility in (10 cm V s ).

4. Results and discussion models for a collection of 13 cationic and anionic
1 2sulfonamides (H2A , A ) and also anionic sulfon-

The experimental and calculated values of the amides in the presence of SDS micelle, are given in
electrophoretic mobilities using the MLR and ANN Tables 1 and 2, respectively. The values of the

Table 2
Experimental and ANN and MLR calculated values of electrophoretic mobilities together with the values of the descriptors appearing in
models 1 and 2 for the anionic sulfonamides

a b cNo. Descriptors Electrophoretic mobility
d e

DH PPCH SA Anionic (1) Anionic (2)

m m m m m mANN MLR EXP ANN MLR EXP

1 238.676 2.994 232.650 22.634 22.570 22.630 22.452 22.352 22.450
2 233.983 2.998 283.950 22.155 22.193 22.170 22.050 22.044 22.050
3 249.012 2.993 273.366 22.295 22.314 22.250 22.114 22.142 22.130
4 239.583 2.992 286.758 22.163 22.204 22.130 22.034 22.039 22.030
5 228.375 2.996 265.536 22.292 22.299 22.310 22.131 22.176 22.120
6 258.408 2.997 276.768 22.266 22.290 22.280 22.112 22.115 22.110
7 48.732 2.989 247.176 22.332 22.313 22.330 22.242 22.277 22.240
8 28.605 2.984 288.918 22.207 22.191 22.210 22.027 21.989 22.030
9 261.776 2.991 275.796 22.381 22.329 22.390 22.133 22.146 22.120

10 295.875 2.990 304.686 22.195 22.200 22.190 22.014 21.953 22.010
11 227.341 2.989 259.056 22.353 22.388 22.360 22.182 22.223 22.180
12 239.995 2.976 254.142 22.471 22.608 22.470 22.286 22.281 22.280
13 251.892 2.996 265.158 22.427 22.368 22.430 22.196 22.191 22.220

a The numbers refer to the compounds given in Table 1.
b Definitions of the descriptors are given in the text.
c 4 2 21 21

m is mobility in (10 cm V s ).
d Anionic sulfonamides in the absence of the micelle.
e Anionic sulfonamides in the presence of the micelle.
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Table 3
Specifications of the multiple linear regression models

Model Descriptor Notation Coefficient Mean effect

Cationic Heat of formation DH 10.001 (60.001) 0.184
P-function of dissociation constant pK 11.335 (60.124) 2.708
Surface area SA 20.002 (60.002) 20.611
Constant 21.091 (60.714)

Anionic (1) Heat of formation DH 10.002 (60.001) 20.077
Most positive partial charge PPCH 13.655 (62.453) 10.928
Surface area SA 10.008 (60.001) 2.076
Constant 215.252 (67.330)

Anionic (2) Heat of formation DH 10.001 (60.000) 20.039
Most positive partial charge PPCH 11.800 (61.537) 5.382
Surface area SA 10.007 (60.001) 1.855
Constant 29.351 (64.591)

descriptors appearing in the models are also given in lower. On the other hand, in agreement with the
these tables. Offord, the mobility is inversely proportional to the

surface area [19]. This is due to the fact that the
4.1. Regression analysis frictional coefficient may arise from the shear across

a small element of liquid close to the migration
Multiple linear regressions were performed using molecule that can be a function of the surface area of

all of compounds in the data set. After regression the molecule. Also, it is generally assumed that
analysis, three of the best models for cationic and electrophoretic mobility is given by m 5 q /6phr,e

anionic sulfonamides were chosen and are presented where r is the hydrodynamic radius of the analyte
in Table 3. It can be seen from this table that three [20]. It can be seen from this equation that electro-
descriptors have appeared in each model. The first phoretic mobility is inversely proportional to the
model for positively charged species consists of radius of the molecules. Heat of formation of the
surface area (SA), heat of formation of cations (DH ) species (DH ) has also appeared in all three models.
and p-function of dissociation constant (pK). The Inspection of Table 3 reveals that the mean effect of
second and third models for negatively charged the parameter of DH is very small in all three models
species consist of surface area (SA), heat of forma- compared with the remaining parameters appearing
tion of anions (DH ) and maximum positive partial in the models. This is due to the fact that DH has no
charge on the anions (PPCH ). Mean effects of these significant effect on the mobilities. It is noteworthy
parameters on the mobilities are also given in Table that inclusion of this parameter considerably im-
3. It can be seen from this table that for cationic proves the statistics of the models. The third parame-
sulfonamides, pK has a larger mean effect than SA ter in the anionic models is the most positive partial
and DH, whereas for anionic sulfonamides, the charge on the analyte (PPCH ). This parameter plays
parameter of PPCH has the largest mean effect. an important role in migration of anions in the
Mean effect and coefficient of SA in the models presence of an electric field. As the value of PPCH
indicate that for cationic sulfonamides, positive increases, the electrophoretic mobility of anions
charge density on the surface decreases as surface toward the anode decreases. In agreement with the
area increases and therefore the motion of cation experiment, p-function of dissociation constant for
toward the cathode and its electrophoretic mobility the cationic sulfonamides shows a linear relationship
decreases. However for anionic sulfonamides, with with the electrophoretic mobility. It is noteworthy
larger surface area, negative charge density on the that a number of topological descriptors were investi-
surface is less and motion of the anion toward the gated for the generation of the models in this work,
anode is slower and its electrophoretic mobility is but these parameters, in agreement with previous
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work [1], did not contribute to the mobilities and did the MLR model for the cationic sulfonamides. In
not appear in the models. order to optimize the number of nodes in the hidden

The descriptors appearing in the MLR model for layer, several training sessions were conducted with
anionic sulfonamides in the presence of the SDS different numbers of hidden nodes. The value of SET
micelle and corresponding coefficients are similar to was calculated for a total of 30 000 iterations. The
those in the absence of the micelle. It should be calculated values of SET were plotted against the
noted that this micelle is an anionic one, therefore number of iterations, from which the number of
the direction of the electroosmotic and electropho- hidden nodes with minimum value of SET was
retic mobilities are the same as in the absence of the chosen. The results obtained indicate that four nodes
micelle. in hidden layer were sufficient for a good per-

Because the number of molecules included in the formance of the network for the anionic sulfon-
data set was small, the cross-validation method [21] amides. Learning rate and momentum were opti-
was used to evaluate the ability of the selected mized in a similar way. Because the three parameters
models in predicting the electrophoretic mobility of appearing in the two MLR models were identical, the
the sulfonamides. In this method, since three de- network for anionic sulfonamides has three inputs
scriptors appeared in the models, three species were and two outputs for the two series of data. The
removed randomly from the data set each time and number of hidden nodes for the cationic network was
the model was generated with the remaining mole- obtained to be six. This network also consists of
cules. Then, the electrophoretic mobility of the three inputs, the same as three parameters in the
removed molecules was predicted using the gener- MLR model, and one output for one series of data.
ated model. This procedure was continued until each Because of the small data set, the cross-validation

2analyte was predicted once. The values of R method was used to evaluate the prediction ability ofcv

obtained using the cross-validation method for differ- the generated networks. In this method, similar to
ent groups of compounds are given in Table 4. These that for the MLR model, three species were removed
results in agreement with the experiment, indicate randomly from the data set each time and the
that size of the analyte and its electronic properties network was trained with the remaining data. Then
play an important role in the migration of the the electrophoretic mobilities of the removed species
sulfonamides in capillary electrophoresis. were predicted using the trained network. It is

noteworthy that training of the network was stopped
4.2. Neural network analysis when the standard error of prediction (SEP) started

to increase, i.e. when overtraining begins. A typical
A 3-4-2 ANN was generated using the three plot of SET and SEP variations versus the number of

descriptors of SA, DH and PPCH appearing in the iterations is given in Fig. 3 for one group of cationic
MLR models of 1 and 2 as inputs for the anionic sulfonamides in the cross-validation procedure. It
sulfonamides and a 3-6-1 ANN was generated using can be seen that while the SET for the training set
the three descriptors of SA, DH and pK appearing in continues to decrease during the progression of

Table 4
2R values of cross-validation for MLR and ANN methodscv

Group No. of removed Cationic Anionic (1) Anionic (2)
compounds 2 2 2 2 2 2R R R R R RMLR ANN MLR ANN MLR ANN

1 3 0.952 0.999 0.513 0.991 0.828 0.995
2 3 0.890 0.995 0.792 0.972 0.946 0.966
3 3 0.625 0.994 0.661 0.905 0.775 0.885
4 2 0.833 0.945 0.897 0.994 0.689 0.999
5 2 0.686 0.999 0.913 0.999 0.502 0.999
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of anionic sulfonamides should be compared with the
values of 1.91 and 1.07%, respectively, for the ANN
model. For cationic sulfonamides, standard error has
improved considerably from 13.49% for the MLR
model to 1.96% for the ANN model. Fig. 4(a–b)
shows the plot of the ANN calculated against the
experimental values of the electrophoretic mobility
of sulfonamides as cationic and anionic forms. The
residuals of the ANN predicted values of electro-
phoretic mobilities are plotted against the experimen-

Fig. 3. Variations of SET and SEP versus the number of iterations
for one group of the cationic sulfonamides.

iteration, the SEP for the prediction set initially
decreases and then starts to increase after |15 000
iterations. This situation, called overtraining, causes
the ANN to loose its predictive power. Therefore,
during training of the networks, it is desirable that
iterations are stopped when overtraining begins.

2The values of R obtained using the cross-valida-cv

tion method for different groups of compounds are
shown in Table 4. These results indicate the su-
periority of the generated networks over the regres-
sion models.

Table 5 compares the MLR and ANN calculated
values of the sulfonamide mobilities. The correlation
coefficients and standard error values of these
models show the superiority of the ANN over that of
the MLR models for the prediction of the electro-
phoretic mobility of these compounds. The standard
errors (SE) of 6.05 and 4.51% for the MLR models

Table 5
Comparison between the results obtained using the ANN and
MLR models

Model ANN MLR

R SE (%) R SE (%)

Cationic 0.999 1.96 0.934 13.49
Anionic (1) 0.991 1.91 0.909 6.05

Fig. 4. Experimental versus calculated values of electrophoretic
Anionic (2) 0.997 1.07 0.937 4.51

mobilities. (a) Anionic sulfonamides; (b) cationic sulfonamides.
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